📒
Machine & Deep Learning Compendium
CtrlK
  • The Machine & Deep Learning Compendium
    • Thanks Page
  • The Ops Compendium
  • Types Of Machine Learning
    • Overview
    • Model Families
    • Weakly Supervised
    • Semi Supervised
    • Active Learning
    • Online Learning
    • N-Shot Learning
    • Unlearning
  • Foundation Knowledge
    • Data Science
    • Data Science Tools
    • Management
    • Project & Program Management
    • Data Science Management
    • Calculus
    • Probability & Statistics
    • Probability
    • Hypothesis Testing
    • Feature Types
    • Multi Label Classification
    • Distribution
    • Distribution Transformation
    • Normalization & Scaling
    • Regularization
    • Information Theory
    • Game Theory
    • Multi CPU Processing
    • Benchmarking
  • Validation & Evaluation
    • Features
    • Evaluation Metrics
    • Datasets
    • Dataset Confidence
    • Hyper Parameter Optimization
    • Training Strategies
    • Calibration
    • Datasets Reliability & Correctness
    • Data & Model Tests
    • Fairness, Accountability, and Transparency
    • Interpretable & Explainable AI (XAI)
    • Federated Learning
  • Machine Learning
    • Algorithms 101
    • Meta Learning (AutoML)
    • Probabilistic, Regression
    • Data Mining
    • Process Mining
    • Label Algorithms
    • Clustering Algorithms
    • Anomaly Detection
    • Decision Trees
    • Active Learning Algorithms
    • Linear Separator Algorithms
    • Regression
    • Ensembles
    • Reinforcement Learning
    • Incremental Learning
    • Dimensionality Reduction Methods
    • Genetic Algorithms & Genetic Programming
    • Learning Classifier Systems
    • Recommender Systems
    • Timeseries
    • Fourier Transform
    • Digital Signal Processing (DSP)
    • Propensity Score Matching
    • Diffusion models
  • Classical Graph Models
    • Graph Theory
    • Social Network Analysis
  • Deep Learning
    • Deep Neural Nets Basics
    • Deep Neural Frameworks
    • Embedding
    • Deep Learning Models
    • Deep Network Optimization
    • Attention
    • Deep Neural Machine Vision
    • Deep Neural Tabular
    • Deep Neural Time Series
  • Audio
    • Basics
    • Terminology
    • Feature Engineering
    • Deep Neural Audio
    • Algorithms
  • Natural Language Processing
    • A Reality Check
    • NLP Tools
    • Foundation NLP
    • Name Matching
    • String Matching
    • TF-IDF
    • Language Detection Identification Generation (NLD, NLI, NLG)
    • Topics Modeling
    • Named Entity Recognition (NER)
    • SEARCH
    • Neural NLP
    • Tokenization
    • Decoding Algorithms For NLP
    • Multi Language
    • Augmentation
    • Knowledge Graphs
    • Annotation & Disagreement
    • Sentiment Analysis
    • Question Answering
    • Summarization
    • Chat Bots
    • Conversation
  • Generative AI
    • Methods
    • Gen AI Industry
    • Speech
    • Prompt
    • Fairness, Accountability, and Transparency In Prompts
    • Large Language Models (LLMs)
    • Vision
    • GPT
    • Mix N Match
    • Diffusion Models
    • GenAI Applications
    • Agents
    • RAG
    • Chat UI/UX
  • Experimental Design
    • Design Of Experiments
    • DOE Tools
    • A/B Testing
    • Multi Armed Bandits
    • Contextual Bandits
    • Factorial Design
  • Business Domains
    • Follow the regularized leader
    • Growth
    • Root Cause Effects (RCE/RCA)
    • Log Parsing / Templatization
    • Fraud Detection
    • Life Time Value (LTV)
    • Survival Analysis
    • Propaganda Detection
    • NYC TAXI
    • Drug Discovery
    • Intent Recognition
    • Churn Prediction
    • Electronic Network Frequency Analysis
    • Marketing
  • Product Management
    • Expanding Your Data Science Skills
    • Product Vision & Strategy
    • Product / Program Managers
    • Product Management Resources
    • Product Tools
    • User Experience Design (UX)
    • Business
    • Marketing
    • Ideation
  • MLOps (www.OpsCompendium.com)
  • DataOps (www.OpsCompendium.com)
  • Humor
Powered by GitBook
On this page
  • TOOLS
  • SUPER RESOLUTION
  • DETECTION
  • RECOGNITION
  • Segmentation

Was this helpful?

  1. Deep Learning

Deep Neural Machine Vision

TOOLS

  1. Image deduplication

  2. Segment anything by Meta

SUPER RESOLUTION

  1. State of the art comparison

DETECTION

  1. Review on DL technique applied to semantic segmentation

  2. Mastery on obj detection - rcnn family and yolo family

  3. Fair detectron

  4. Maskrcnn benchmark, paper

  5. Simpledet - obj detection and instance recognition

  6. Mmdetection

  7. Blind image separation

  8. UNET

  9. U^2 Net - using a detection network for pencil drawing generation and segmentation

  10. FastAI image segmentation

  11. You Only Look Once: Unified, Real-Time Object Detection, 2015.

  12. YOLO9000: Better, Faster, Stronger, 2016.

  13. YOLOv3: An Incremental Improvement, 2018

  14. R-CNN: Regions with Convolutional Neural Network Features, GitHub.

  15. Fast R-CNN, GitHub.

  16. Faster R-CNN Python Code, GitHub.

  17. YOLO, GitHub.

  18. Rich feature hierarchies for accurate object detection and semantic segmentation, 2013.

  19. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, 2014.

  20. Fast R-CNN, 2015.

  21. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2016.

  22. Mask R-CNN, 2017.

  23. A Brief History of CNNs in Image Segmentation: From R-CNN to Mask R-CNN, 2017.

  24. Object Detection for Dummies Part 3: R-CNN Family, 2017.

  25. Object Detection Part 4: Fast Detection Models, 2018.

  26. Ikea ASM

RECOGNITION

  1. Using image hashtags

Segmentation

  1. Vit

PreviousAttentionNextDeep Neural Tabular

Last updated 2 years ago

Was this helpful?