📒
Machine & Deep Learning Compendium
  • The Machine & Deep Learning Compendium
    • Thanks Page
  • The Ops Compendium
  • Types Of Machine Learning
    • Overview
    • Model Families
    • Weakly Supervised
    • Semi Supervised
    • Active Learning
    • Online Learning
    • N-Shot Learning
    • Unlearning
  • Foundation Knowledge
    • Data Science
    • Data Science Tools
    • Management
    • Project & Program Management
    • Data Science Management
    • Calculus
    • Probability & Statistics
    • Probability
    • Hypothesis Testing
    • Feature Types
    • Multi Label Classification
    • Distribution
    • Distribution Transformation
    • Normalization & Scaling
    • Regularization
    • Information Theory
    • Game Theory
    • Multi CPU Processing
    • Benchmarking
  • Validation & Evaluation
    • Features
    • Evaluation Metrics
    • Datasets
    • Dataset Confidence
    • Hyper Parameter Optimization
    • Training Strategies
    • Calibration
    • Datasets Reliability & Correctness
    • Data & Model Tests
    • Fairness, Accountability, and Transparency
    • Interpretable & Explainable AI (XAI)
    • Federated Learning
  • Machine Learning
    • Algorithms 101
    • Meta Learning (AutoML)
    • Probabilistic, Regression
    • Data Mining
    • Process Mining
    • Label Algorithms
    • Clustering Algorithms
    • Anomaly Detection
    • Decision Trees
    • Active Learning Algorithms
    • Linear Separator Algorithms
    • Regression
    • Ensembles
    • Reinforcement Learning
    • Incremental Learning
    • Dimensionality Reduction Methods
    • Genetic Algorithms & Genetic Programming
    • Learning Classifier Systems
    • Recommender Systems
    • Timeseries
    • Fourier Transform
    • Digital Signal Processing (DSP)
    • Propensity Score Matching
    • Diffusion models
  • Classical Graph Models
    • Graph Theory
    • Social Network Analysis
  • Deep Learning
    • Deep Neural Nets Basics
    • Deep Neural Frameworks
    • Embedding
    • Deep Learning Models
    • Deep Network Optimization
    • Attention
    • Deep Neural Machine Vision
    • Deep Neural Tabular
    • Deep Neural Time Series
  • Audio
    • Basics
    • Terminology
    • Feature Engineering
    • Deep Neural Audio
    • Algorithms
  • Natural Language Processing
    • A Reality Check
    • NLP Tools
    • Foundation NLP
    • Name Matching
    • String Matching
    • TF-IDF
    • Language Detection Identification Generation (NLD, NLI, NLG)
    • Topics Modeling
    • Named Entity Recognition (NER)
    • SEARCH
    • Neural NLP
    • Tokenization
    • Decoding Algorithms For NLP
    • Multi Language
    • Augmentation
    • Knowledge Graphs
    • Annotation & Disagreement
    • Sentiment Analysis
    • Question Answering
    • Summarization
    • Chat Bots
    • Conversation
  • Generative AI
    • Methods
    • Gen AI Industry
    • Speech
    • Prompt
    • Fairness, Accountability, and Transparency In Prompts
    • Large Language Models (LLMs)
    • Vision
    • GPT
    • Mix N Match
    • Diffusion Models
    • GenAI Applications
    • Agents
    • RAG
    • Chat UI/UX
  • Experimental Design
    • Design Of Experiments
    • DOE Tools
    • A/B Testing
    • Multi Armed Bandits
    • Contextual Bandits
    • Factorial Design
  • Business Domains
    • Follow the regularized leader
    • Growth
    • Root Cause Effects (RCE/RCA)
    • Log Parsing / Templatization
    • Fraud Detection
    • Life Time Value (LTV)
    • Survival Analysis
    • Propaganda Detection
    • NYC TAXI
    • Drug Discovery
    • Intent Recognition
    • Churn Prediction
    • Electronic Network Frequency Analysis
    • Marketing
  • Product Management
    • Expanding Your Data Science Skills
    • Product Vision & Strategy
    • Product / Program Managers
    • Product Management Resources
    • Product Tools
    • User Experience Design (UX)
    • Business
    • Marketing
    • Ideation
  • MLOps (www.OpsCompendium.com)
  • DataOps (www.OpsCompendium.com)
  • Humor
Powered by GitBook
On this page

Was this helpful?

  1. Validation & Evaluation

Datasets Reliability & Correctness

Or why we shouldn't trust models

PreviousCalibrationNextData & Model Tests

Last updated 2 years ago

Was this helpful?

  1. - in relations to cues left in the dataset that models find, instead of actually solving the defined task!

    1. Ablating, i.e. removing, part of a model and observing the impact this has on performance is a common method for verifying that the part in question is useful. If performance doesn't go down, then the part is useless and should be removed. Carrying this method over to datasets, it should become common practice to perform dataset ablations, as well, for example:

    2. Provide only incomplete input (as done in the reviewed paper): This verifies that the complete input is required. If not, the dataset contains cues that allow taking shortcuts.

    3. Shuffle the input: This verifies the importance of word (or sentence) order. If a bag-of-words/sentences gives similar results, even though the task requires sequential reasoning, then the model has not learned sequential reasoning and the dataset contains cues that allow the model to "solve" the task without it.

    4. Assign random labels: How much does performance drop if ten percent of instances are relabeled randomly? How much with all random labels? If scores don't change much, the model probably didn't learning anything interesting about the task.

    5. Randomly replace content words: How much does performance drop if all noun phrases and/or verb phrases are replaced with random noun phrases and verbs? If not much, the dataset may provide unintended non-content cues, such as sentence length or distribution of function words.

    6. Datasets need more love

    7. Datasets ablation and public beta

    8. Inter-prediction agreement

  2. Behavioral testing and CHECKLIST

    1. , , ,

Clever Hans effect
Paper
Blog
Youtube
paper
git
Yonatan hadar on the subject in hebrew