đź“’
Machine & Deep Learning Compendium
  • The Machine & Deep Learning Compendium
    • Thanks Page
  • The Ops Compendium
  • Types Of Machine Learning
    • Overview
    • Model Families
    • Weakly Supervised
    • Semi Supervised
    • Active Learning
    • Online Learning
    • N-Shot Learning
    • Unlearning
  • Foundation Knowledge
    • Data Science
    • Data Science Tools
    • Management
    • Project & Program Management
    • Data Science Management
    • Calculus
    • Probability & Statistics
    • Probability
    • Hypothesis Testing
    • Feature Types
    • Multi Label Classification
    • Distribution
    • Distribution Transformation
    • Normalization & Scaling
    • Regularization
    • Information Theory
    • Game Theory
    • Multi CPU Processing
    • Benchmarking
  • Validation & Evaluation
    • Features
    • Evaluation Metrics
    • Datasets
    • Dataset Confidence
    • Hyper Parameter Optimization
    • Training Strategies
    • Calibration
    • Datasets Reliability & Correctness
    • Data & Model Tests
    • Fairness, Accountability, and Transparency
    • Interpretable & Explainable AI (XAI)
    • Federated Learning
  • Machine Learning
    • Algorithms 101
    • Meta Learning (AutoML)
    • Probabilistic, Regression
    • Data Mining
    • Process Mining
    • Label Algorithms
    • Clustering Algorithms
    • Anomaly Detection
    • Decision Trees
    • Active Learning Algorithms
    • Linear Separator Algorithms
    • Regression
    • Ensembles
    • Reinforcement Learning
    • Incremental Learning
    • Dimensionality Reduction Methods
    • Genetic Algorithms & Genetic Programming
    • Learning Classifier Systems
    • Recommender Systems
    • Timeseries
    • Fourier Transform
    • Digital Signal Processing (DSP)
    • Propensity Score Matching
    • Diffusion models
  • Classical Graph Models
    • Graph Theory
    • Social Network Analysis
  • Deep Learning
    • Deep Neural Nets Basics
    • Deep Neural Frameworks
    • Embedding
    • Deep Learning Models
    • Deep Network Optimization
    • Attention
    • Deep Neural Machine Vision
    • Deep Neural Tabular
    • Deep Neural Time Series
  • Audio
    • Basics
    • Terminology
    • Feature Engineering
    • Deep Neural Audio
    • Algorithms
  • Natural Language Processing
    • A Reality Check
    • NLP Tools
    • Foundation NLP
    • Name Matching
    • String Matching
    • TF-IDF
    • Language Detection Identification Generation (NLD, NLI, NLG)
    • Topics Modeling
    • Named Entity Recognition (NER)
    • SEARCH
    • Neural NLP
    • Tokenization
    • Decoding Algorithms For NLP
    • Multi Language
    • Augmentation
    • Knowledge Graphs
    • Annotation & Disagreement
    • Sentiment Analysis
    • Question Answering
    • Summarization
    • Chat Bots
    • Conversation
  • Generative AI
    • Methods
    • Gen AI Industry
    • Speech
    • Prompt
    • Fairness, Accountability, and Transparency In Prompts
    • Large Language Models (LLMs)
    • Vision
    • GPT
    • Mix N Match
    • Diffusion Models
    • GenAI Applications
    • Agents
    • RAG
    • Chat UI/UX
  • Experimental Design
    • Design Of Experiments
    • DOE Tools
    • A/B Testing
    • Multi Armed Bandits
    • Contextual Bandits
    • Factorial Design
  • Business Domains
    • Follow the regularized leader
    • Growth
    • Root Cause Effects (RCE/RCA)
    • Log Parsing / Templatization
    • Fraud Detection
    • Life Time Value (LTV)
    • Survival Analysis
    • Propaganda Detection
    • NYC TAXI
    • Drug Discovery
    • Intent Recognition
    • Churn Prediction
    • Electronic Network Frequency Analysis
    • Marketing
  • Product Management
    • Expanding Your Data Science Skills
    • Product Vision & Strategy
    • Product / Program Managers
    • Product Management Resources
    • Product Tools
    • User Experience Design (UX)
    • Business
    • Marketing
    • Ideation
  • MLOps (www.OpsCompendium.com)
  • DataOps (www.OpsCompendium.com)
  • Humor
Powered by GitBook
On this page

Was this helpful?

  1. Types Of Machine Learning

Weakly Supervised

PreviousModel FamiliesNextSemi Supervised

Last updated 3 years ago

Was this helpful?

, relies heavily on feature engineering methods such as number of hashtags, number of punctuations and other insights that are really good for this type of text.

  1. A great for weakly supervision, discusses:

    1. Incomplete supervision

    2. Inaccurate

    3. Inexact

    4. Active learning

  2. weakly

  3. - "Test-time training turns a single unlabeled test instance into a self-supervised learning problem, on which we update the model parameters before making a prediction on this instance. "

  4. - "Large datasets often have unreliable labels—such as those obtained from Amazon’s Mechanical Turk or social media platforms—and classifiers trained on mislabeled datasets often exhibit poor performance. We present a simple, effective technique for accounting for label noise when training deep neural networks. We augment a standard deep network with a softmax layer that models the label noise statistics. Then, we train the deep network and noise model jointly via end-to-end stochastic gradient descent on the (perhaps mislabeled) dataset. The augmented model is overdetermined, so in order to encourage the learning of a non-trivial noise model, we apply dropout regularization to the weights of the noise model during training. Numerical experiments on noisy versions of the CIFAR-10 and MNIST datasets show that the proposed dropout technique outperforms state-of-the-art methods."

  5. - “Weakly supervised instance labeling using only image-level labels, in lieu of expensive fine-grained pixel annotations, is crucial in several applications including medical image analysis. In contrast to conventional instance segmentation scenarios in computer vision, the problems that we consider are characterized by a small number of training images and non-local patterns that lead to the diagnosis. In this paper, we explore the use of multiple instance learning (MIL) to design an instance label generator under this weakly supervised setting. Motivated by the observation that an MIL model can handle bags of varying sizes, we propose to repurpose an MIL model originally trained for bag-level classification to produce reliable predictions for single instances, i.e., bags of size 1. To this end, we introduce a novel regularization strategy based on virtual adversarial training for improving MIL training, and subsequently develop a knowledge distillation technique for repurposing the trained MIL model. Using empirical studies on colon cancer and breast cancer detection from histopathological images, we show that the proposed approach produces high-quality instance-level prediction and significantly outperforms state-of-the MIL methods.”

Text classification with extremely small datasets
review paper
Stanford on
Stanford ai on snorkel
Intro to Snorkel
Hazy research on weak and snorkel
Out of distribution generalization using test-time training
Learning Deep Networks from Noisy Labels with Dropout Regularization
Distill to label weakly supervised instance labeling using knowledge distillation
Yet another article summarising FAIR